Estimating the effects of Amazonian deforestation on the spatial distribution of rainfall and terrestrial ecosystem dynamics

Marcos Longo, Ryan G. Knox, Naomi M. Levine, Yeonjoo Kim, David M. Medvigy, Rachel I. Albrecht, Maria A. F. Silva Dias, Steven C. Wofsy, Rafael L. Bras, Paul R. Moorcroft

1Department of Earth and Planetary Science – Harvard University
Cambridge, MA, United States – mlongo@fas.harvard.edu

The Meeting of the Americas
Foz do Iguaçu – August 9th, 2010
Deforestation in the Amazon

Soares-Filho et al. (2006); Merry et al. (2009)
Deforestation in the Amazon

Soares-Filho et al. (2006); Merry et al. (2009)
Future scenarios

Soares-Filho et al. (2006); Merry et al. (2009)
Woodland breeze?

- Smaller scale deforestation:
 - Local circulations due to differential heating;
 - Late dry season: deforested areas are more convective.
Main goals

- Understand how the ongoing and the predicted deforestation affect the climate in the Amazon:
 - Precipitation and cloudiness
 - Local circulations
 - Other mechanisms

- Understand how the ecosystem respond to changes in environmental conditions.
Coupled model: ED2 levels

Moorcroft et al. (2001); Medvigy et al. (2006)
ED2.1 long term dynamics
Coupling between models

- Introduction
- Goals
- Results
- Methods
- Conclusion
Land use conversion

Introduc
tion
Goals
Methods
Results
Conclusion
s

Albani et al. (2006)
Deforestation scenario runs

- ED-2.1 only, driven with Sheffield et al. (2006) data:
 - 64-km Potential vegetation:
 - 6 Plant functional types
 - Absolute extinction, steady state, or 500 years
 - Land-use change applied between 1940 and 2039:
 - GLU (Hurtt et al. 2006) between 1940 and 2002
 - SimAmazonia2 (Merry et al. 2009) between 2010 and 2038
 - Interpolation between the two periods
 - Coupled runs:
 - ECMWF-Interim reanalysis for Aug-Oct 2008;
 - Land-use state as of 2008 and 2038.
 - 42km over the tropical South America
 - 16km over Amazonas (1-way nesting)
Deforestation scenario runs
Deforestation scenario runs

Above-ground biomass (2038)
Dry Season

[kgC/m²]

[0.05, 20.00]
Precipitation – Sept-Oct 2008

TRMM (3B42)

EDBRAMS - 2008
Changes due to land use

Precipitation difference (2038 - 2008) - Dry Season

Mean difference - Air temperature

degC

Mean difference - Zonal wind at 1km AGL

m/s
Change due to land use

Precipitation difference (2038 - 2008) - Dry Season [mm]
Change due to land use

Precipitation difference (2038 - 2008) - Dry Season [mm]

Mean difference - Precipitation rate

Mean difference - Canopy Air Temperature
Energy terms. 2008

Seasonal mean - Net shortwave Radiation

Seasonal mean - Downward longwave Radiation

Seasonal mean - Sensible heat flux

Seasonal mean - Evapotranspiration
Differential heating forcing

Above-ground biomass (2008)
Dry Season

\[B = \frac{1}{\rho^2} \nabla \rho \times \nabla \rho \]
Differential heating forcing

\[B = \frac{1}{\rho^2} \nabla \rho \times \nabla \rho \]

Above-ground biomass (2038)
Dry Season

Mean - Differential heating forcing - 17 UTC
Latitude: 2.52 S, Dry Season - (2006)

Mean difference - Differential heating forcing - 17 UTC
Latitude: 2.52 S, Dry Season - (2038 - 2006)
Differential heating forcing

Above-ground biomass (2038) Dry Season

\[B = \frac{1}{\rho^2} \nabla \rho \times \nabla \rho \]
Forest feedback

Introduction

Goals

Results

Methods

Conclusion
Forest feedback

Introduction

Goals

Results

Methods

Conclusion

BAU 2008 Simulation - Manaus, AM

Time series of mean diurnal cycle: Ecosystem carbon fluxes

- GFP
- Plant resp.
- Herb. resp.
- NEP

Net primary productivity - Manaus, AM

Time: Sep - 2008

- C4 Grass
- Early Tropical
- Mid Tropical
- Late Tropical

BAU 2038 Simulation - Manaus, AM

Time series of mean diurnal cycle: Ecosystem carbon fluxes

- GFP
- Plant resp.
- Herb. resp.
- NEP

Net primary productivity - Manaus, AM

Time: Sep - 2008

- C4 Grass
- Early Tropical
- Mid Tropical
- Late Tropical
Deforestation shifts precipitation distribution:

- Rainfall reduction at the already deforested coast;
- (?) Shift in diurnal cycle of precipitation over logged forest
- Increase in precipitation along the edge of heavily deforested areas
 - Width of deforestation matters!
Forest feedback:
- Little impact on the productivity of the remaining forest far inland;
-Logged forests experience slight decrease in NEP (temperature and radiation effect);
- High disturbance environment causes increase in fluxes (?)
Acknowledgements

This work has been supported by:

- CNPq - 200686-2005/4
- NASA - NNX08AU95H

Especial thanks to:

- Britaldo Soares Filho
- The Harvard University Research Computing group, in particular to Christopher Walker
- Matthew Hayek
- V. Y. Chow
- Bruno Biazeto
- Alexander Antonarakis
- Carla Barger
Forest or cerrado?

- Frequent droughts (and fires) favors cerrado
- Range in which both biomes are possible
- Changes in climate → savannization?

Oyama and Nobre (2003)

Cox et al. (2004)
Not a homogeneous place

- Biodiversity has significant spatial patterns;
- Seasonal “greenness” despite being evergreen.

Saatchi et al. (2008)
Myneni et al. (2007)
Is the forest the only stable state?

- Cerrado could be also stable on the eastern half;
- $\text{CO}_2 \uparrow$: Increased water use efficiency;
- Longer droughts \Rightarrow cerrado is favored;

Oyama and Nobre (2003)

Cox et al. (2001)
Future scenarios

2039 - Business as Usual - SimAmazonia 1

Classes
- Deforested
- Natural forest
- Cerrado
- Managed forest

Soares-Filho et al. (2006); Merry et al. (2009)
Paved road effect

Source: Landsat 5, available at PRODES/INPE
Paved road effect

Source: Landsat 5, available at PRODES/INPE
Coupled model: BRAMS-4.0.6

Advection
Tremback et al. (1987)

Convection
Grell and Dévényi (2002)

Turbulence
Nakanishi and Niino (2004)

Radiation
Harrington et al. (2000)
Toon et al. (1988)

Introduction
Goals
Methods
Results
Conclusion
Land heterogeneities force circulations

- Land/water heterogeneity generates clouds:
 - Large-scale sea-breeze developing squall lines;
 - River-breeze creating minimum convection over rivers.
Impact of deforestation on climate

- **Local deforestation**: local circulation effect dominates;

- **Large-scale deforestation**: evapotranspiration effect dominates;

\[d’Almeida \textit{et al.} (2007) \]
Differential heating

\[B = \frac{1}{\rho^2} \nabla \rho \times \nabla p \]